Affiliation:
1. Lotus Hill Institute, Hubei Province, China
2. Lotus Hill Institute, Hubei Province, China and University of California, Los Angeles, CA
Abstract
We present a semantics-driven approach for stroke-based painterly rendering, based on recent image parsing techniques [Tu et al. 2005; Tu and Zhu 2006] in computer vision. Image parsing integrates segmentation for regions, sketching for curves, and recognition for object categories. In an interactive manner, we decompose an input image into a hierarchy of its constituent components in a parse tree representation with occlusion relations among the nodes in the tree. To paint the image, we build a brush dictionary containing a large set (760) of brush examples of four shape/appearance categories, which are collected from professional artists, then we select appropriate brushes from the dictionary and place them on the canvas guided by the image semantics included in the parse tree, with each image component and layer painted in various styles. During this process, the scene and object categories also determine the color blending and shading strategies for inhomogeneous synthesis of image details. Compared with previous methods, this approach benefits from richer meaningful image semantic information, which leads to better simulation of painting techniques of artists using the high-quality brush dictionary. We have tested our approach on a large number (hundreds) of images and it produced satisfactory painterly effects.
Funder
Division of Information and Intelligent Systems
Ministry of Science and Technology of the People's Republic of China
National Natural Science Foundation of China
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献