Sound and reusable components for abstract interpretation

Author:

Keidel Sven1,Erdweg Sebastian1

Affiliation:

1. Johannes Gutenberg University Mainz, Germany

Abstract

Abstract interpretation is a methodology for defining sound static analysis. Yet, building sound static analyses for modern programming languages is difficult, because these static analyses need to combine sophisticated abstractions for values, environments, stores, etc. However, static analyses often tightly couple these abstractions in the implementation, which not only complicates the implementation, but also makes it hard to decide which parts of the analyses can be proven sound independently from each other. Furthermore, this coupling makes it hard to combine soundness lemmas for parts of the analysis to a soundness proof of the complete analysis. To solve this problem, we propose to construct static analyses modularly from reusable analysis components . Each analysis component encapsulates a single analysis concern and can be proven sound independently from the analysis where it is used. We base the design of our analysis components on arrow transformers , which allows us to compose analysis components. This composition preserves soundness, which guarantees that a static analysis is sound, if all its analysis components are sound. This means that analysis developers do not have to worry about soundness as long as they reuse sound analysis components. To evaluate our approach, we developed a library of 13 reusable analysis components in Haskell. We use these components to define a k -CFA analysis for PCF and an interval and reaching definition analysis for a While language.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Abstract Interpretation of Java Bytecode in Sturdy;Proceedings of the 26th ACM International Workshop on Formal Techniques for Java-like Programs;2024-09-20

2. Abstract Interpreters: A Monadic Approach to Modular Verification;Proceedings of the ACM on Programming Languages;2024-08-15

3. Compiling with Abstract Interpretation;Proceedings of the ACM on Programming Languages;2024-06-20

4. Interactive Abstract Interpretation with Demanded Summarization;ACM Transactions on Programming Languages and Systems;2024-03-29

5. A Modular Soundness Theory for the Blackboard Analysis Architecture;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3