Continuous body and hand gesture recognition for natural human-computer interaction

Author:

Song Yale1,Demirdjian David1,Davis Randall1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, MA

Abstract

Intelligent gesture recognition systems open a new era of natural human-computer interaction: Gesturing is instinctive and a skill we all have, so it requires little or no thought, leaving the focus on the task itself, as it should be, not on the interaction modality. We present a new approach to gesture recognition that attends to both body and hands, and interprets gestures continuously from an unsegmented and unbounded input stream. This article describes the whole procedure of continuous body and hand gesture recognition, from the signal acquisition to processing, to the interpretation of the processed signals.Our system takes a vision-based approach, tracking body and hands using a single stereo camera. Body postures are reconstructed in 3D space using a generative model-based approach with a particle filter, combining both static and dynamic attributes of motion as the input feature to make tracking robust to self-occlusion. The reconstructed body postures guide searching for hands. Hand shapes are classified into one of several canonical hand shapes using an appearance-based approach with a multiclass support vector machine. Finally, the extracted body and hand features are combined and used as the input feature for gesture recognition. We consider our task as an online sequence labeling and segmentation problem. A latent-dynamic conditional random field is used with a temporal sliding window to perform the task continuously. We augment this with a novel technique called multilayered filtering, which performs filtering both on the input layer and the prediction layer. Filtering on the input layer allows capturing long-range temporal dependencies and reducing input signal noise; filtering on the prediction layer allows taking weighted votes of multiple overlapping prediction results as well as reducing estimation noise.We tested our system in a scenario of real-world gestural interaction using the NATOPS dataset, an official vocabulary of aircraft handling gestures. Our experimental results show that: (1) the use of both static and dynamic attributes of motion in body tracking allows statistically significant improvement of the recognition performance over using static attributes of motion alone; and (2) the multilayered filtering statistically significantly improves recognition performance over the nonfiltering method. We also show that, on a set of twenty-four NATOPS gestures, our system achieves a recognition accuracy of 75.37%.

Funder

Division of Information and Intelligent Systems

Office of Naval Research

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Reference43 articles.

1. Superquadrics and Angle-Preserving Transformations

2. The recognition of human movement using temporal templates

3. Bradski G. and Kaehler A. 2008. Learning OpenCV: Computer Vision with the OpenCV Library. O'Reilly Cambridge MA. Bradski G. and Kaehler A. 2008. Learning OpenCV: Computer Vision with the OpenCV Library. O'Reilly Cambridge MA.

4. LIBSVM

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Person Pose Regression With Distribution-Aware Single-Stage Models;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-08

2. Pyramid Deep Fusion Network for Two-Hand Reconstruction From RGB-D Images;IEEE Transactions on Circuits and Systems for Video Technology;2024-07

3. Co-Speech Gesture Detection through Multi-Phase Sequence Labeling;2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2024-01-03

4. Method of interacting between humans and conversational voice agent systems;Heliyon;2024-01

5. Multi-view 3D human pose estimation based on multi-scale feature by orthogonal projection;E3S Web of Conferences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3