Affiliation:
1. Hasso Plattner Institute, Faculty of Digital Engineering, University of Potsdam, Germany
2. University of Rostock, Germany
Abstract
Thematic maps are a common tool to visualize semantic data with a spatial reference. Combining thematic data with a geometric representation of their natural reference frame aids the viewer’s ability in gaining an overview, as well as perceiving patterns with respect to location; however, as the amount of data for visualization continues to increase, problems such as information overload and visual clutter impede perception, requiring data aggregation and level-of-detail visualization techniques. While existing aggregation techniques for thematic data operate in a 2D reference frame (i.e., map), we present two aggregation techniques for 3D spatial and spatiotemporal data mapped onto virtual city models that hierarchically aggregate thematic data in real time during rendering to support on-the-fly and on-demand level-of-detail generation. An object-based technique performs aggregation based on scene-specific objects and their hierarchy to facilitate per-object analysis, while the scene-based technique aggregates data solely based on spatial locations, thus supporting visual analysis of data with arbitrary reference geometry. Both techniques can apply different aggregation functions (mean, minimum, and maximum) for ordinal, interval, and ratio-scaled data and can be easily extended with additional functions. Our implementation utilizes the programmable graphics pipeline and requires suitably encoded data, i.e., textures or vertex attributes. We demonstrate the application of both techniques using real-world datasets, including solar potential analyses and the propagation of pressure waves in a virtual city model.
Publisher
Association for Computing Machinery (ACM)
Subject
Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modeling and Simulation,Information Systems,Signal Processing
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献