Hierarchical Spatial Aggregation for Level-of-Detail Visualization of 3D Thematic Data

Author:

Vollmer Jan Ole1ORCID,Trapp Matthias1,Schumann Heidrun2,Döllner Jürgen1

Affiliation:

1. Hasso Plattner Institute, Faculty of Digital Engineering, University of Potsdam, Germany

2. University of Rostock, Germany

Abstract

Thematic maps are a common tool to visualize semantic data with a spatial reference. Combining thematic data with a geometric representation of their natural reference frame aids the viewer’s ability in gaining an overview, as well as perceiving patterns with respect to location; however, as the amount of data for visualization continues to increase, problems such as information overload and visual clutter impede perception, requiring data aggregation and level-of-detail visualization techniques. While existing aggregation techniques for thematic data operate in a 2D reference frame (i.e., map), we present two aggregation techniques for 3D spatial and spatiotemporal data mapped onto virtual city models that hierarchically aggregate thematic data in real time during rendering to support on-the-fly and on-demand level-of-detail generation. An object-based technique performs aggregation based on scene-specific objects and their hierarchy to facilitate per-object analysis, while the scene-based technique aggregates data solely based on spatial locations, thus supporting visual analysis of data with arbitrary reference geometry. Both techniques can apply different aggregation functions (mean, minimum, and maximum) for ordinal, interval, and ratio-scaled data and can be easily extended with additional functions. Our implementation utilizes the programmable graphics pipeline and requires suitably encoded data, i.e., textures or vertex attributes. We demonstrate the application of both techniques using real-world datasets, including solar potential analyses and the propagation of pressure waves in a virtual city model.

Publisher

Association for Computing Machinery (ACM)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modeling and Simulation,Information Systems,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3