Synthesis of data completion scripts using finite tree automata

Author:

Wang Xinyu1,Dillig Isil1,Singh Rishabh2

Affiliation:

1. University of Texas at Austin, USA

2. Microsoft Research, USA

Abstract

In application domains that store data in a tabular format, a common task is to fill the values of some cells using values stored in other cells. For instance, such data completion tasks arise in the context of missing value imputation in data science and derived data computation in spreadsheets and relational databases. Unfortunately, end-users and data scientists typically struggle with many data completion tasks that require non-trivial programming expertise. This paper presents a synthesis technique for automating data completion tasks using programming-by-example (PBE) and a very lightweight sketching approach. Given a formula sketch (e.g., AVG(? 1 , ? 2 )) and a few input-output examples for each hole, our technique synthesizes a program to automate the desired data completion task. Towards this goal, we propose a domain-specific language (DSL) that combines spatial and relational reasoning over tabular data and a novel synthesis algorithm that can generate DSL programs that are consistent with the input-output examples. The key technical novelty of our approach is a new version space learning algorithm that is based on finite tree automata (FTA). The use of FTAs in the learning algorithm leads to a more compact representation that allows more sharing between programs that are consistent with the examples. We have implemented the proposed approach in a tool called DACE and evaluate it on 84 benchmarks taken from online help forums. We also illustrate the advantages of our approach by comparing our technique against two existing synthesizers, namely Prose and Sketch.

Funder

AFRL

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Bottom-Up Synthesis for Programs with Local Variables;Proceedings of the ACM on Programming Languages;2024-01-05

2. Relational Synthesis of Recursive Programs via Constraint Annotated Tree Automata;Lecture Notes in Computer Science;2024

3. Programming by Example Made Easy;ACM Transactions on Software Engineering and Methodology;2023-11-24

4. Saggitarius: A DSL for Specifying Grammatical Domains;Proceedings of the ACM on Programming Languages;2023-10-16

5. Inductive Program Synthesis Guided by Observational Program Similarity;Proceedings of the ACM on Programming Languages;2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3