Accelerating Performance Inference over Closed Systems by Asymptotic Methods

Author:

Casale Giuliano1

Affiliation:

1. Imperial College London, London, United Kingdom

Abstract

Recent years have seen a rapid growth of interest in exploiting monitoring data collected from enterprise applications for automated management and performance analysis. In spite of this trend, even simple performance inference problems involving queueing theoretic formulas often incur computational bottlenecks, for example upon computing likelihoods in models of batch systems. Motivated by this issue, we revisit the solution of multiclass closed queueing networks, which are popular models used to describe batch and distributed applications with parallelism constraints. We first prove that the normalizing constant of the equilibrium state probabilities of a closed model can be reformulated exactly as a multidimensional integral over the unit simplex. This gives as a by-product novel explicit expressions for the multiclass normalizing constant. We then derive a method based on cubature rules to efficiently evaluate the proposed integral form in small and medium-sized models. For large models, we propose novel asymptotic expansions and Monte Carlo sampling methods to efficiently and accurately approximate normalizing constants and likelihoods. We illustrate the resulting accuracy gains in problems involving optimization-based inference.

Funder

Horizon 2020

Engineering and Physical Sciences Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

General Medicine

Reference47 articles.

1. The statistical analysis of compositional data;Aitchison J.;J. Royal Stat. Society. Series B., 139--177,1982

2. A unified framework for the bottleneck analysis of multiclass queueing networks

3. K. E. Atkinson. An Introduction to Numerical Analysis. John Wiley & Sons 2nd ed. 1989. K. E. Atkinson. An Introduction to Numerical Analysis. John Wiley & Sons 2nd ed. 1989.

4. Asymptotic analysis of multiclass closed queueing networks: Multiple bottlenecks

5. How to integrate a polynomial over a simplex

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3