Parallel evaluation of multi-join queries

Author:

Wilschut Annita N.1,Flokstra Jan1,Apers Peter M. G.1

Affiliation:

1. University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands

Abstract

A number of execution strategies for parallel evaluation of multi-join queries have been proposed in the literature; their performance was evaluated by simulation. In this paper we give a comparative performance evaluation of four execution strategies by implementing all of them on the same parallel database system, PRISMA/DB. Experiments have been done up to 80 processors. The basic strategy is to first determine an execution schedule with minimum total cost and then parallelize this schedule with one of the four execution strategies. These strategies, coming from the literature, are named: Sequential Parallel, Synchronous Execution, Segmented Right-Deep, and Full Parallel. Based on the experiments clear guidelines are given when to use which strategy.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Reference35 articles.

1. PRISMA/DB: a parallel, main memory relational DBMS

2. P. M. G. Apers & A. N. Wilschut "Understanding large scale parallelism for data management " in Keynote at the 3rd PDIS Conf Austin Texas USA September 1994. P. M. G. Apers & A. N. Wilschut "Understanding large scale parallelism for data management " in Keynote at the 3rd PDIS Conf Austin Texas USA September 1994.

3. Prototyping Bubba, a highly parallel database system

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SepJoin: A Distributed Stream Join System with Low Latency and High Throughput;2022 IEEE 28th International Conference on Parallel and Distributed Systems (ICPADS);2023-01

2. An adaptive non-migrating load-balanced distributed stream window join system;The Journal of Supercomputing;2022-12-15

3. Re-evaluating the Performance Trade-offs for Hash-Based Multi-Join Queries;Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data;2020-06-11

4. Optimization for Multi-Join Queries on the GPU;IEEE Access;2020

5. Query Load Balancing in Parallel Database Systems;Encyclopedia of Database Systems;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3