Breaking the Curse of Class Imbalance: Bangla Text Classification

Author:

Rafi-Ur-Rashid Md.1ORCID,Mahbub Mahim1ORCID,Adnan Muhammad Abdullah1ORCID

Affiliation:

1. Bangladesh University of Engineering & Technology (BUET), Bangladesh, and United International University, Dhaka, Bangladesh

Abstract

This article addresses the class imbalance issue in a low-resource language called Bengali. As a use-case, we choose one of the most fundamental NLP tasks, i.e., text classification, where we utilize three benchmark text corpora: fake-news dataset, sentiment analysis dataset, and song lyrics dataset. Each of them contains a critical class imbalance. We attempt to tackle the problem by applying several strategies that include data augmentation with synthetic samples via text and embedding generation in order to augment the proportion of the minority samples. Moreover, we apply ensembling of deep learning models by subsetting the majority samples. Additionally, we enforce the focal loss function for class-imbalanced data classification. We also apply the outlier detection technique, data resampling, and hidden feature extraction to improve the minority-f1 score. All of our experimentations are entirely focused on textual content analysis, which results in a more than90%minority f1 score for each of the three tasks. It is an excellent outcome on such highly class-imbalanced datasets.

Funder

ICT Division, Government of the People’s Republic of Bangladesh

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3