T reble

Author:

Yim Keun Soo1ORCID,Malchev Iliyan1,Hsieh Andrew1,Burke Dave1

Affiliation:

1. Google, Mountain View, CA

Abstract

This paper presents our experience with T reble , a two-year initiative to build the modular base in Android, a Java-based mobile platform running on the Linux kernel. Our T reble architecture splits the hardware independent core framework written in Java from the hardware dependent vendor implementations (e.g., user space device drivers, vendor native libraries, and kernel written in C/C++). Cross-layer communications between them are done via versioned, stable inter-process communication interfaces whose backward compatibility is tested by using two API compliance suites. Based on this architecture, we repackage the key Android software components that suffered from crucial post-launch security bugs as separate images. That not only enables separate ownerships but also independent updates of each image by interested ecosystem entities. We discuss our experience of delivering T reble architectural changes to silicon vendors and device makers using a yearly release model. Our experiments and industry rollouts support our hypothesis that giving more freedom to all ecosystem entities and creating an equilibrium are a transformation necessary to further scale the world largest open source ecosystem with over two billion active devices.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference25 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessment of Security Defense of Native Programs Against Software Faults;Springer Series in Reliability Engineering;2022-07-26

2. The Android Platform Security Model;ACM Transactions on Privacy and Security;2021-08-31

3. Deploying Android Security Updates: an Extensive Study Involving Manufacturers, Carriers, and End Users;Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security;2020-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3