A Unified Multi-view Clustering Algorithm Using Multi-objective Optimization Coupled with Generative Model

Author:

Mitra Sayantan1ORCID,Hasanuzzaman Mohammed2,Saha Sriparna1

Affiliation:

1. Indian Institute of Technology Patna, Bihar, India

2. ADAPT Centre, School of Computing, Dublin, Ireland

Abstract

There is a large body of works on multi-view clustering that exploit multiple representations (or views) of the same input data for better convergence. These multiple views can come from multiple modalities (image, audio, text) or different feature subsets. Obtaining one consensus partitioning after considering different views is usually a non-trivial task. Recently, multi-objective based multi-view clustering methods have suppressed the performance of single objective based multi-view clustering techniques. One key problem is that it is difficult to select a single solution from a set of alternative partitionings generated by multi-objective techniques on the final Pareto optimal front. In this article, we propose a novel multi-objective based multi-view clustering framework that overcomes the problem of selecting a single solution in multi-objective based techniques. In particular, our proposed framework has three major components as follows: (i) multi-view based multi-objective algorithm, Multiview-AMOSA, for initial clustering of data points; (ii) a generative model for generating a combined solution having probabilistic labels; and (iii) K -means algorithm for obtaining the final labels. As the first component, we have adopted a recently developed multi-view based multi-objective clustering algorithm to generate different possible consensus partitionings of a given dataset taking into account different views. A generative model is coupled with the first component to generate a single consensus partitioning after considering multiple solutions. It exploits the latent subsets of the non-dominated solutions obtained from the multi-objective clustering algorithm and combines them to produce a single probabilistic labeled solution. Finally, a simple clustering algorithm, namely K -means, is applied on the generated probabilistic labels to obtain the final cluster labels. Experimental validation of our proposed framework is carried out over several benchmark datasets belonging to three different domains; UCI datasets, multi-view datasets, search result clustering datasets, and patient stratification datasets. Experimental results show that our proposed framework achieves an improvement of around 2%--4% over different evaluation metrics in all the four domains in comparison to state-of-the art methods.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3