Affiliation:
1. University of Mary Washington, USA
2. Virginia Tech, USA
Abstract
Exploring high-dimensional data is challenging. Dimension reduction algorithms, such as weighted multidimensional scaling, support data exploration by projecting datasets to two dimensions for visualization. These projections can be explored through parametric interaction, tweaking underlying parameterizations, and observation-level interaction, directly interacting with the points within the projection. In this article, we present the results of a controlled usability study determining the differences, advantages, and drawbacks among parametric interaction, observation-level interaction, and their combination. The study assesses both interaction technique effects on domain-specific high-dimensional data analyses performed by non-experts of statistical algorithms. This study is performed using Andromeda, a tool that enables both parametric and observation-level interaction to provide in-depth data exploration. The results indicate that the two forms of interaction serve different, but complementary, purposes in gaining insight through steerable dimension reduction algorithms.
Funder
National Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Human-Computer Interaction
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献