EffiCuts

Author:

Vamanan Balajee1,Voskuilen Gwendolyn1,Vijaykumar T. N.1

Affiliation:

1. Purdue University, West Lafayette, IN, USA

Abstract

Packet Classification is a key functionality provided by modern routers. Previous decision-tree algorithms, HiCuts and HyperCuts, cut the multi-dimensional rule space to separate a classifier's rules. Despite their optimizations, the algorithms incur considerable memory overhead due to two issues: (1) Many rules in a classifier overlap and the overlapping rules vary vastly in size, causing the algorithms' fine cuts for separating the small rules to replicate the large rules. (2) Because a classifier's rule-space density varies significantly, the algorithms' equi-sized cuts for separating the dense parts needlessly partition the sparse parts, resulting in many ineffectual nodes that hold only a few rules. We propose EffiCuts which employs four novel ideas: (1) Separable trees: To eliminate overlap among small and large rules, we separate all small and large rules. We define a subset of rules to be separable if all the rules are either small or large in each dimension. We build a distinct tree for each such subset where each dimension can be cut coarsely to separate the large rules, or finely to separate the small rules without incurring replication. (2) Selective tree merging: To reduce the multiple trees' extra accesses which degrade throughput, we selectively merge separable trees mixing rules that may be small or large in at most one dimension. (3) Equi-dense cuts: We employ unequal cuts which distribute a node's rules evenly among the children, avoiding ineffectual nodes at the cost of a small processing overhead in the tree traversal. (4) Node Co-location: To achieve fewer accesses per node than HiCuts and HyperCuts, we co-locate parts of a node and its children. Using ClassBench, we show that for similar throughput EffiCuts needs factors of 57 less memory than HyperCuts and of 4-8 less power than TCAM.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3