Affiliation:
1. MPI-SWS, Kaiserslautern-Saarbruecken, Germany
2. Northeastern University, Boston, MA, USA
Abstract
Recently, there has been much excitement in the research community over using social networks to mitigate multiple identity, or Sybil, attacks. A number of schemes have been proposed, but they differ greatly in the algorithms they use and in the networks upon which they are evaluated. As a result, the research community lacks a clear understanding of how these schemes compare against each other, how well they would work on real-world social networks with different structural properties, or whether there exist other (potentially better) ways of Sybil defense.
In this paper, we show that, despite their considerable differences, existing Sybil defense schemes work by detecting local communities (i.e., clusters of nodes more tightly knit than the rest of the graph) around a trusted node. Our finding has important implications for both existing and future designs of Sybil defense schemes. First, we show that there is an opportunity to leverage the substantial amount of prior work on general community detection algorithms in order to defend against Sybils. Second, our analysis reveals the fundamental limits of current social network-based Sybil defenses: We demonstrate that networks with well-defined community structure are inherently more vulnerable to Sybil attacks, and that, in such networks, Sybils can carefully target their links in order make their attacks more effective.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Software
Reference36 articles.
1. Advogato trust network. http://www.trustlet.org/wiki/Advogato. Advogato trust network. http://www.trustlet.org/wiki/Advogato.
2. Communities from seed sets
3. Evaluating local community methods in networks
4. All your contacts are belong to us
Cited by
141 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献