Agent-oriented embedded electronic measuring systems

Author:

Chan Hing Kai1

Affiliation:

1. East Anglia, Norwich, Norfolk, U.K.

Abstract

Introduction Agent technology has attracted the attention of academia in many domains in the past decade. It is probably due to the fact that computer systems have been becoming complicated with distribution and openness characteristics. Agent-based systems, or multi-agent systems in general, are contemporary paradigm for software development. Ashri et al. claimed that "the underlying concept of decentralized, autonomous control expressed through agents that are able to communicate and cooperate to achieve goals is especially appealing for applications in heterogeneous and dynamic computing environments." Jennings refers agent-oriented software development approach to as "decomposing the problem into multiple, autonomous components that can act and interact in flexible ways to achieve their set objectives." Jennings also advocates that agent-oriented software development approach offers the following advantages: • Decompose a complex problem effectively so that the problem space can be divided into smaller sub-problem space; • A natural way of modelling such systems because they are, most often, decentralized in nature; and • Interaction among agents is appropriate for modelling the dependencies that exist in complex systems. In the instrumentation and measurement domain, application of agent technology is still in its infancy. Dobrowiecki et al. discussed how measuring instruments are related to artificial intelligence, in particular agent technology. They presented a general idea of agent-based system which is "to order a service from an agent and to delegate any responsibility of direct control, rather than to monitor closely the progress of the problem solving". Amigoni et al. claimed that agent techniques have evolved and improved over the years such that "impacts on measurement systems whose nature and conceptual interpretation have radically changed." Real-life applications of agent technology in this domain are not well documented. It is not easy to find a successful application of agent-based instrumentation and measuring system, although PC-based distributed instrumentation and measuring systems are not uncommon. In fact, they are usually configured as client-server systems. In this article, two real-life agent-oriented applications which are embedded measuring systems will be reviewed. In fact, the two cases are commercial products and have already been mass produced. The reasons why such distributed approach is used will be revealed. In fact, one of them is limited by the outlook design so that two individual functional units (which are agents) have to be built for each final product. On the other hand, the other one is decomposed into different independent units to simplify the software development and product design, which is a collaborative work by three independent companies. Main issues, including difficulties, that came across during the course of development of the two cases with respect to agent-oriented design will be addressed in this article.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hinged External Fixation in Orthopaedic and Trauma Surgery of the Elbow;Acta chirurgiae orthopaedicae et traumatologiae Cechoslovaca;2013-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3