A Unified Framework for Robust and Efficient Hotspot Detection in Smart Cities

Author:

Xie Yiqun1,Shekhar Shashi2

Affiliation:

1. University of Minnesota, Twin Cities and University of Maryland, College Park, College Park, MD

2. University of Minnesota, Twin Cities, Minneapolis, MN

Abstract

Given N geo-located point instances (e.g., crime or disease cases) in a spatial domain, we aim to detect sub-regions (i.e., hotspots) that have a higher probability density of generating such instances than the others. Hotspot detection has been widely used in a variety of important urban applications, including public safety, public health, urban planning, and equity, among others. The problem is challenging because its societal applications often have low tolerance for false positives and require significance testing that is computationally intensive. In related work, the spatial scan statistic introduced a likelihood ratio--based framework for hotspot evaluation and significance testing. However, it fails to consider the effect of spatial non-determinism, causing many missing detections. Our previous work introduced a non-deterministic normalization--based scan statistic to mitigate this issue. However, its robustness against false positives is not stably controlled. To address these limitations, we propose a unified framework that can improve the completeness of results without incurring more false positives. We also propose a reduction algorithm to improve the computational efficiency. Experiment results confirm that the unified framework can greatly improve the recall of hotspot detection without increasing the number of false positives, and the reduction algorithm can greatly reduce execution time.

Funder

National Science Foundation

Advanced Research Projects Agency - Energy

U.S. Department of Agriculture

U.S. Department of Defense

OVPR U-Spatial, University of Minnesota

National Institutes of Health

Minnesota Supercomputing Institute, University of Minnesota

Publisher

Association for Computing Machinery (ACM)

Reference50 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Statistically-Robust Clustering Techniques for Mapping Spatial Hotspots: A Survey;ACM Computing Surveys;2022-01-18

2. Significant DBSCAN+: Statistically Robust Density-based Clustering;ACM Transactions on Intelligent Systems and Technology;2021-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3