Deep Learning for Android Malware Defenses: A Systematic Literature Review

Author:

Liu Yue1ORCID,Tantithamthavorn Chakkrit1ORCID,Li Li1,Liu Yepang2ORCID

Affiliation:

1. Monash University, Wellington Rd, Clayton, VIC, Australia

2. Southern University of Science and Technology, Shenzhen, China

Abstract

Malicious applications (particularly those targeting the Android platform) pose a serious threat to developers and end-users. Numerous research efforts have been devoted to developing effective approaches to defend against Android malware. However, given the explosive growth of Android malware and the continuous advancement of malicious evasion technologies like obfuscation and reflection, Android malware defense approaches based on manual rules or traditional machine learning may not be effective. In recent years, a dominant research field called deep learning (DL), which provides a powerful feature abstraction ability, has demonstrated a compelling and promising performance in a variety of areas, like natural language processing and computer vision. To this end, employing DL techniques to thwart Android malware attacks has recently garnered considerable research attention. Yet, no systematic literature review focusing on DL approaches for Android malware defenses exists. In this article, we conducted a systematic literature review to search and analyze how DL approaches have been applied in the context of malware defenses in the Android environment. As a result, a total of 132 studies covering the period 2014–2021 were identified. Our investigation reveals that, while the majority of these sources mainly consider DL-based Android malware detection, 53 primary studies (40.1%) design defense approaches based on other scenarios. This review also discusses research trends, research focuses, challenges, and future research directions in DL-based Android malware defenses.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Few-Shot Malware Classification via Attention-Based Transductive Learning Network;Mobile Networks and Applications;2024-08-28

2. Behavioral based detection of android ransomware using machine learning techniques;International Journal of System Assurance Engineering and Management;2024-07-24

3. Automatically Recommend Code Updates: Are We There Yet?;ACM Transactions on Software Engineering and Methodology;2024-07-16

4. CSMC: A Secure and Efficient Visualized Malware Classification Method Inspired by Compressed Sensing;Sensors;2024-06-30

5. Intelligent Behavioral Monitoring and Detection of Preinstalled Malicious Applications on Smartphones Sold in Emerging African Markets;2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC);2024-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3