A cost-effective load-balancing policy for tile-based, massive multi-core packet processors

Author:

Musoll Enric1

Affiliation:

1. ConSentry Networks, Milpitas, CA

Abstract

Massive multi-core architectures provide a computation platform with high processing throughput, enabling the efficient processing of workloads with a significant degree of thread-level parallelism found in networking environments. Communication-centric workloads, like those in LAN and WAN environments, are fundamentally composed of sets of packets, named flows. The packets within a flow usually have dependencies among them, which reduce the amount of parallelism. However, packets of different flows tend to have very few or no dependencies among them, and thus can exploit thread-level parallelism to its fullest extent. Therefore, in massive tile-based multi-core architectures, it is important that the processing of the packets of a particular flow takes place in a set of cores physically close to each other to minimize the communication latency among those cores. Moreover, it is also desirable to spread out the processing of the different flows across all the cores of the processor in order to minimize the stress on a reduced number of cores, thus minimizing the potential for thermal hotspots and increasing the reliability of the processor. In addition, the burst-like nature of packet-based workloads render most of the cores idle most of the time, enabling large power savings by power gating these idle cores. This work presents a high-level study of the performance, power, and thermal behavior of tile-based architectures with a large number of cores executing flow-based packet workloads, and proposes a load-balancing policy of assigning packets to cores that minimizes the communication latency while featuring a hotspot-free thermal profile.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. References;Modeling and Optimization of Parallel and Distributed Embedded Systems;2016-01-08

2. High-performance optimizations on tiled many-core embedded systems: a matrix multiplication case study;The Journal of Supercomputing;2013-04-05

3. Variable-size mosaics: A process-variation aware technique to increase the performance of tile-based, massive multi-core processors;Computers & Electrical Engineering;2011-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3