Efficient and Effective Cardinality Estimation for Skyline Family

Author:

Miao Xiaoye1ORCID,Wu Yangyang1ORCID,Peng Jiazhen1ORCID,Gao Yunjun1ORCID,Yin Jianwei1ORCID

Affiliation:

1. Zhejiang University, Hangzhou, China

Abstract

Cardinality estimation, predicting the query result size, is a fundamental problem in databases. Existing skyline cardinality estimation methods are computationally infeasible for massive skyline queries over the large-scale database. In this paper, we introduce a unified skyline family w.r.t. various skyline variants. We propose an efficient and effective skyline family cardinality estimation model, named EECE, in an end-to-end manner. EECE consists of two modules, unsupervised data distribution learning (DDL) and supervised monotonic cardinality estimation (MCE). DDL leverages the mixture data guided transformer to learn the distribution of database and query parameters for model pre-training. MCE further incorporates supervised learning and parameter clamping to enhance the estimation under monotonicity guarantees. We develop an efficient incremental learning algorithm for EECE to adapt the database and query logs update. Extensive experiments on several real-world and synthetic datasets demonstrate that, EECE speeds up the cardinality estimation by six orders of magnitude, with more than 39% accuracy gain, compared to the state-of-the-art approaches.

Funder

The National Natural Science Foundation of China

The Fundamental Research Funds for the Central Universities

The Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars

Publisher

Association for Computing Machinery (ACM)

Reference60 articles.

1. Stephan Borzsony Donald Kossmann and Konrad Stocker. 2001. The skyline operator. In ICDE. 421--430. Stephan Borzsony Donald Kossmann and Konrad Stocker. 2001. The skyline operator. In ICDE. 421--430.

2. Chee-Yong Chan , HV Jagadish , Kian-Lee Tan , Anthony KH Tung, and Zhenjie Zhang . 2006 . Finding k-dominant skylines in high dimensional space. In SIGMOD. 503--514. Chee-Yong Chan, HV Jagadish, Kian-Lee Tan, Anthony KH Tung, and Zhenjie Zhang. 2006. Finding k-dominant skylines in high dimensional space. In SIGMOD. 503--514.

3. Surajit Chaudhuri Nilesh Dalvi and Raghav Kaushik. 2006. Robust cardinality and cost estimation for skyline operator. In ICDE. 64--73. Surajit Chaudhuri Nilesh Dalvi and Raghav Kaushik. 2006. Robust cardinality and cost estimation for skyline operator. In ICDE. 64--73.

4. Mark Chen Alec Radford Rewon Child Jeffrey Wu Heewoo Jun David Luan and Ilya Sutskever. 2020. Generative pretraining from pixels. In ICML. 1691--1703. Mark Chen Alec Radford Rewon Child Jeffrey Wu Heewoo Jun David Luan and Ilya Sutskever. 2020. Generative pretraining from pixels. In ICML. 1691--1703.

5. The unique qualities of a geographic information system: A commentary;Cooperative GI;Photogrammetric Engineering and Remote Sensing,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3