Versatile Control of Fluid-directed Solid Objects Using Multi-task Reinforcement Learning

Author:

Ren Bo1ORCID,Ye Xiaohan1ORCID,Pan Zherong2ORCID,Zhang Taiyuan1ORCID

Affiliation:

1. College of Computer Science, Nankai University, Tianjin, China

2. Lightspeed & Quantum Studios, Tencent America, Seattle, WA, USA

Abstract

We propose a learning-based controller for high-dimensional dynamic systems with coupled fluid and solid objects. The dynamic behaviors of such systems can vary across different simulators and the control tasks subject to changing requirements from users. Our controller features high versatility and can adapt to changing dynamic behaviors and multiple tasks without re-training, which is achieved by combining two training strategies. We use meta-reinforcement learning to inform the controller of changing simulation parameters. We further design a novel task representation, which allows the controller to adapt to continually changing tasks via hindsight experience replay. We highlight the robustness and generality of our controller on a row of dynamic-rich tasks, including scooping up solid balls from a water pool, in-air ball acrobatics using fluid spouts, and zero-shot transferring to unseen simulators and constitutive models. In all the scenarios, our controller consistently outperforms the plain multi-task reinforcement-learning baseline.

Funder

Open Project Program of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference64 articles.

1. Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. 2017. Hindsight experience replay. In Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates, Long Beach, CA. Retrieved from https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf.

2. Markus Becker and Matthias Teschner. 2007. Weakly compressible SPH for free surface flows. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’07). Eurographics Association, Goslar, DEU, 209–217.

3. DReCon

4. Deformable objects alive!

5. Yan Duan John Schulman Xi Chen Peter L. Bartlett Ilya Sutskever and Pieter Abbeel. 2016. RL \( ^2 \) : Fast Reinforcement Learning via Slow Reinforcement Learning. Retrieved from https://arXiv:1611.02779.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Level Progressive Reinforcement Learning for Control Policy in Physical Simulations;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. DiffFR: Differentiable SPH-Based Fluid-Rigid Coupling for Rigid Body Control;ACM Transactions on Graphics;2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3