Utilizing classical programming principles in the Intel Quantum SDK: implementation of quantum lattice Boltzmann method

Author:

Shinde Tejas12ORCID,Budinski Ljubomir13ORCID,Niemimäki Ossi1ORCID,Lahtinen Valtteri1ORCID,Liebelt Helena4ORCID,Li Rui5ORCID

Affiliation:

1. Quanscient Oy, Tampere, Finland

2. Applied Computer Science, University of Jyväskylä Faculty of Information Technology, Jyvaskyla, Finland

3. University of Novi Sad Faculty of Technical Sciences, Novi Sad Serbia

4. Applied Computer Science, Deggendorf Institute of Technology, Deggendorf, Germany

5. Deggendorf Institute of Technology, Deggendorf Germany

Abstract

We explore the use of classical programming techniques in implementing the quantum lattice Boltzmann method in the Intel Quantum SDK – a software tool for quantum circuit creation and execution on Intel quantum hardware. As hardware access is limited, we use the state vector simulator provided by the SDK. The novelty of this work lies in leveraging classical techniques for the implementation of quantum algorithms. We emphasize the refinement of algorithm implementation and devise strategies to enhance quantum circuits for better control over problem variables. To this end, we adopt classical principles such as modularization, which allows for systematic and controlled execution of complex algorithms. Furthermore, we discuss how the same implementation could be expanded from state vector simulations to execution on quantum hardware with minor adjustments in these configurations.

Publisher

Association for Computing Machinery (ACM)

Reference30 articles.

1. A.A.Mohamad. 2019. Lattice Boltzmann Method - Fundamentals and Engineering Applications with Computer codes. Springer-Verlag London Ltd.

2. Andris Ambainis. 2010. Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arxiv:1010.4458  [quant-ph]

3. Ville Bergholm Josh Izaac Maria Schuld Christian Gogolin Shahnawaz Ahmed Vishnu Ajith M. Sohaib Alam Guillermo Alonso-Linaje B. AkashNarayanan Ali Asadi Juan Miguel Arrazola Utkarsh Azad Sam Banning Carsten Blank Thomas R Bromley Benjamin A. Cordier Jack Ceroni Alain Delgado Olivia Di Matteo Amintor Dusko Tanya Garg Diego Guala Anthony Hayes Ryan Hill Aroosa Ijaz Theodor Isacsson David Ittah Soran Jahangiri Prateek Jain Edward Jiang Ankit Khandelwal Korbinian Kottmann Robert A. Lang Christina Lee Thomas Loke Angus Lowe Keri McKiernan Johannes Jakob Meyer J. A. Montañez-Barrera Romain Moyard Zeyue Niu Lee James O’Riordan Steven Oud Ashish Panigrahi Chae-Yeun Park Daniel Polatajko Nicolás Quesada Chase Roberts Nahum Sá Isidor Schoch Borun Shi Shuli Shu Sukin Sim Arshpreet Singh Ingrid Strandberg Jay Soni Antal Száva Slimane Thabet Rodrigo A. Vargas-Hernández Trevor Vincent Nicola Vitucci Maurice Weber David Wierichs Roeland Wiersema Moritz Willmann Vincent Wong Shaoming Zhang and Nathan Killoran. 2022. PennyLane: Automatic differentiation of hybrid quantum-classical computations. arxiv:1811.04968  [quant-ph]

4. Quantum algorithm for the advection–diffusion equation simulated with the lattice Boltzmann method

5. Quantum algorithm for the Navier–Stokes equations by using the streamfunction-vorticity formulation and the lattice Boltzmann method

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3