Block-RACS: Towards Reputation-Aware Client Selection and Monetization Mechanism for Federated Learning

Author:

Batool Zahra1,Zhang Kaiwen1,Toews Matthew1

Affiliation:

1. École de technologie supérieure, Montréal, Québec, Canada

Abstract

Federated Learning (FL) is a promising solution for training using data collected from heterogeneous sources (e.g., mobile devices) while avoiding the transmission of large amounts of raw data and preserving privacy. Current FL approaches operate in an iterative manner by selecting a subset of participants each round, asking them to training using their latest local data over the most recent version of the global model, before collecting these local model updates and aggregating them to form the next iteration of the global model, and so forth until convergence is reached. Unfortunately, existing FL approaches typically select randomly the set of clients to use each round, which can negatively impact the quality of the model trained, as well the training round time due to the straggler problem. Moreover, clients, especially mobile devices with limited resources, should be incentivized to participate as federated learning is essentially a form of crowdsourcing for AI which requires monetization. We argue that integrating blockchain and smart contract technologies into FL can solve the two aforementioned issues. In this paper, we present Block-RACS (Blockchain-based Reputation Aware Client Selection), a mechanism for FL operating in a smart contract which rewards clients for their participation using cryptocurrencies. Block-RACS employs a multidimensional auction mechanism for selecting users based on the compute and network resources offered by each client, as well as the quality of their local data. This auction is realized in a reliable and auditable manner through a smart contract. This allows Block-RACS to measure the relative contribution of each client by calculating a Shapley value and allocating rewards accordingly. Moreover, a blockchain-based reputation mechanism enables audibility and non-repudiation. The security analysis of the system is also presented to check the security vulnerabilities. We have implemented Block-RACS using Solidity and tested on the Ethereum blockchain with various popular datasets. Our results show that Block-RACS outperforms existing baseline schemes by improving accuracy and reducing the number of FL rounds.

Publisher

Association for Computing Machinery (ACM)

Subject

Industrial and Manufacturing Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3