Relating Optimal Repairs in Ontology Engineering with Contraction Operations in Belief Change

Author:

Baader Franz1

Affiliation:

1. TU Dresden, Institute of Theoretical Computer Science, Dresden, Germany and Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, Germany

Abstract

The question of how a given knowledge base can be modified such that certain unwanted consequences are removed has been investigated in the area of ontology engineering under the name of repair and in the area of belief change under the name of contraction. Whereas in the former area the emphasis was more on designing and implementing concrete repair algorithms, the latter area concentrated on characterizing classes of contraction operations by certain postulates they satisfy. In the classical setting, repairs and contractions are subsets of the knowledge base that no longer have the unwanted consequence. This makes these approaches syntax-dependent and may result in removal of more consequences than necessary. To alleviate this problem, gentle repairs and pseudo-constractions have been introduced in the respective research areas, and their connections have been investigated in recent work. Optimal repairs preserve a maximal amount of consequences, but they may not always exist. We show that, if they exist, then they can be obtained by certain pseudo-contraction operations, and thus they comply with the postulates that these operations satisfy. Conversely, under certain conditions, pseudo-contractions are guaranteed to produce optimal repairs. Recently, contraction operations have also been defined for concepts rather than for whole knowledge bases. We show that there is again a close connection between such operations and optimal repairs of a restricted form of knowledge bases.

Publisher

Association for Computing Machinery (ACM)

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3