Performance-Energy Trade-off in Modern CMPs

Author:

Abera Solomon1,Balakrishnan M.1,Kumar Anshul1

Affiliation:

1. Indian Institute of Technology Delhi, India

Abstract

Chip multiprocessors (CMPs) are ubiquitous in all computing systems ranging from high-end servers to mobile devices. In these systems, energy consumption is a critical design constraint as it constitutes the most significant operating cost for computing clouds. Analogous to this, longer battery life continues to be an essential user concern in mobile devices. To optimize on power consumption, modern processors are designed with Dynamic Voltage and Frequency Scaling (DVFS) support at the individual core as well as the uncore level. This allows fine-grained control of performance and energy. For an n core processor with m core and uncore frequency choices, the total DVFS configuration space is now m (n+1) (with the uncore accounting for the + 1). In addition to that, in CMPs, the performance-energy trade-off due to core/uncore frequency scaling concerning a single application cannot be determined independently as cores share critical resources like the last level cache (LLC) and the memory. Thus, unlike the uni-processor environment, the energy consumption of an application running on a CMP depends not only on its characteristics but also on those of its co-runners (applications running on other cores). The key objective of our work is to select a suitable core and uncore frequency that minimizes power consumption while limiting application performance degradation within certain pre-defined limits (can be termed as QoS requirements). The key contribution of our work is a learning-based model that is able to capture the interference due to shared cache, bus bandwidth, and memory bandwidth between applications running on multiple cores and predict near-optimal frequencies for core and uncore.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference41 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic uncore frequency scaling based on performance events of Web applications;Proceedings of the 2023 8th International Conference on Cloud Computing and Internet of Things;2023-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3