1. A. Bar, L. Rokach, G. Shani, B. Shapira, and A. Schclar. Improving simple collaborative filtering models using ensemble methods. In Z.-H. Zhou, F. Roli, and J. Kittler, editors, Multiple Classifier Systems, volume 7872 of Lecture Notes in Computer Science, pages 1--12. Springer Berlin Heidelberg, 2013.
2. J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, UAI'98, pages 43--52, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.
3. I. Cantador, P. Brusilovsky, and T. Kuflik. 2nd workshop on information heterogeneity and fusion in recommender systems (hetrec 2011). In Proceedings of the 5th ACM conference on Recommender systems, RecSys 2011, New York, NY, USA, 2011. ACM.
4. M. Domingues, F. Gouyon, A. Jorge, J. Leal, J. Vinagre, L. Lemos, and M. Sordo. Combining usage and content in an online recommendation system for music in the long tail. International Journal of Multimedia Information Retrieval, 2(1):3--13, 2013.
5. A. Fortes, M. Domingues, S. Rezende, and M. Manzato. Improving personalized ranking in recommender systems with multimodal interactions. Web Conference Intelligence - WIC, 2014.