Online Scene CAD Recomposition via Autonomous Scanning

Author:

Li Changhao1ORCID,Guo Junfu1ORCID,Hu Ruizhen2ORCID,Liu Ligang1ORCID

Affiliation:

1. University of Science and Technology of China, China

2. Shenzhen University, China

Abstract

Autonomous surface reconstruction of 3D scenes has been intensely studied in recent years, however, it is still difficult to accurately reconstruct all the surface details of complex scenes with complicated object relations and severe occlusions, which makes the reconstruction results not suitable for direct use in applications such as gaming and virtual reality. Therefore, instead of reconstructing the detailed surfaces, we aim to recompose the scene with CAD models retrieved from a given dataset to faithfully reflect the object geometry and arrangement in the given scene. Moreover, unlike most of the previous works on scene CAD recomposition requiring an offline reconstructed scene or captured video as input, which leads to significant data redundancy, we propose a novel online scene CAD recomposition method with autonomous scanning, which efficiently recomposes the scene with the guidance of automatically optimized Next-Best-View (NBV) in a single online scanning pass. Based on the key observation that spatial relation in the scene can not only constrain the object pose and layout optimization but also guide the NBV generation, our system consists of two key modules: relation-guided CAD recomposition module that uses relation-constrained global optimization to get accurate object pose and layout estimation, and relation-aware NBV generation module that makes the exploration during the autonomous scanning tailored for our composition task. Extensive experiments have been conducted to show the superiority of our method over previous methods in scanning efficiency and retrieval accuracy as well as the importance of each key component of our method.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

GD Natural Science Foundation

Shenzhen Science and Technology Program

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference53 articles.

1. Armen Avetisyan , Manuel Dahnert , Angela Dai , Manolis Savva , Angel X. Chang , and Matthias Nießner . 2018a. Scan2CAD: Learning CAD Model Alignment in RGB-D Scans. CoRR abs/1811.11187 ( 2018 ). arXiv:1811.11187 http://arxiv.org/abs/1811.11187 Armen Avetisyan, Manuel Dahnert, Angela Dai, Manolis Savva, Angel X. Chang, and Matthias Nießner. 2018a. Scan2CAD: Learning CAD Model Alignment in RGB-D Scans. CoRR abs/1811.11187 (2018). arXiv:1811.11187 http://arxiv.org/abs/1811.11187

2. Armen Avetisyan , Manuel Dahnert , Angela Dai , Manolis Savva , Angel X. Chang , and Matthias Nießner . 2018b. Scan2CAD: Learning CAD Model Alignment in RGB-D Scans. CoRR abs/1811.11187 ( 2018 ). arXiv:1811.11187 http://arxiv.org/abs/1811.11187 Armen Avetisyan, Manuel Dahnert, Angela Dai, Manolis Savva, Angel X. Chang, and Matthias Nießner. 2018b. Scan2CAD: Learning CAD Model Alignment in RGB-D Scans. CoRR abs/1811.11187 (2018). arXiv:1811.11187 http://arxiv.org/abs/1811.11187

3. Armen Avetisyan , Angela Dai , and Matthias Nießner . 2019. End-to-End CAD Model Retrieval and 9DoF Alignment in 3D Scans. CoRR abs/1906.04201 ( 2019 ). arXiv:1906.04201 http://arxiv.org/abs/1906.04201 Armen Avetisyan, Angela Dai, and Matthias Nießner. 2019. End-to-End CAD Model Retrieval and 9DoF Alignment in 3D Scans. CoRR abs/1906.04201 (2019). arXiv:1906.04201 http://arxiv.org/abs/1906.04201

4. Armen Avetisyan , Tatiana Khanova , Christopher B. Choy , Denver Dash , Angela Dai , and Matthias Nießner . 2020. SceneCAD: Predicting Object Alignments and Layouts in RGB-D Scans. CoRR abs/2003.12622 ( 2020 ). arXiv:2003.12622 https://arxiv.org/abs/2003.12622 Armen Avetisyan, Tatiana Khanova, Christopher B. Choy, Denver Dash, Angela Dai, and Matthias Nießner. 2020. SceneCAD: Predicting Object Alignments and Layouts in RGB-D Scans. CoRR abs/2003.12622 (2020). arXiv:2003.12622 https://arxiv.org/abs/2003.12622

5. A method for registration of 3-D shapes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3