Learning Urban Community Structures

Author:

Wang Pengyang1,Fu Yanjie1ORCID,Zhang Jiawei2,Li Xiaolin3,Lin Dan4

Affiliation:

1. Missouri University of Science and Technology, Rolla, MO, USA

2. Florida State University, Tallahassee, FL, USA

3. Nanjing University, Nanjing, China

4. Missouri University of Science and Technology, MO, USA

Abstract

Learning urban community structures refers to the efforts of quantifying, summarizing, and representing an urban community’s (i) static structures, e.g., Point-Of-Interests (POIs) buildings and corresponding geographic allocations, and (ii) dynamic structures, e.g., human mobility patterns among POIs. By learning the community structures, we can better quantitatively represent urban communities and understand their evolutions in the development of cities. This can help us boost commercial activities, enhance public security, foster social interactions, and, ultimately, yield livable, sustainable, and viable environments. However, due to the complex nature of urban systems, it is traditionally challenging to learn the structures of urban communities. To address this problem, in this article, we propose a collective embedding framework to learn the community structure from multiple periodic spatial-temporal graphs of human mobility. Specifically, we first exploit a probabilistic propagation-based approach to create a set of mobility graphs from periodic human mobility records. In these mobility graphs, the static POIs are regarded as vertexes, the dynamic mobility connectivities between POI pairs are regarded as edges, and the edge weights periodically evolve over time. A collective deep auto-encoder method is then developed to collaboratively learn the embeddings of POIs from multiple spatial-temporal mobility graphs. In addition, we develop a Unsupervised Graph based Weighted Aggregation method to align and aggregate the POI embeddings into the representation of the community structures. We apply the proposed embedding framework to two applications (i.e., spotting vibrant communities and predicting housing price return rates) to evaluate the performance of our proposed method. Extensive experimental results on real-world urban communities and human mobility data demonstrate the effectiveness of the proposed collective embedding framework.

Funder

University of Missouri Research Board

National Science Foundation

Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3