Reachability types: tracking aliasing and separation in higher-order functional programs

Author:

Bao Yuyan1,Wei Guannan2,Bračevac Oliver2,Jiang Yuxuan2,He Qiyang2,Rompf Tiark2

Affiliation:

1. University of Waterloo, Canada

2. Purdue University, USA

Abstract

Ownership type systems, based on the idea of enforcing unique access paths, have been primarily focused on objects and top-level classes. However, existing models do not as readily reflect the finer aspects of nested lexical scopes, capturing, or escaping closures in higher-order functional programming patterns, which are increasingly adopted even in mainstream object-oriented languages. We present a new type system, λ * , which enables expressive ownership-style reasoning across higher-order functions. It tracks sharing and separation through reachability sets, and layers additional mechanisms for selectively enforcing uniqueness on top of it. Based on reachability sets, we extend the type system with an expressive flow-sensitive effect system, which enables flavors of move semantics and ownership transfer. In addition, we present several case studies and extensions, including applications to capabilities for algebraic effects, one-shot continuations, and safe parallelization.

Funder

NSERC

DOE

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Degrees of Separation: A Flexible Type System for Safe Concurrency;Proceedings of the ACM on Programming Languages;2024-04-29

2. Functional Ownership through Fractional Uniqueness;Proceedings of the ACM on Programming Languages;2024-04-29

3. Qualifying System F <: : Some Terms and Conditions May Apply;Proceedings of the ACM on Programming Languages;2024-04-29

4. Polymorphic Reachability Types: Tracking Freshness, Aliasing, and Separation in Higher-Order Generic Programs;Proceedings of the ACM on Programming Languages;2024-01-05

5. Borrowable Fractional Ownership Types for Verification;Lecture Notes in Computer Science;2023-12-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3