Learning from Multi-annotator Data

Author:

Zhan Xueying1,Wang Yaowei1,Rao Yanghui2,Li Qing3

Affiliation:

1. City University of Hong Kong, Hong Kong SAR, China

2. Sun Yat-sen University, Guang Zhou, China

3. The Hong Kong Polytechnic University, Hong Kong SAR, China

Abstract

In the field of sentiment analysis and emotion detection in social media, or other tasks such as text classification involving supervised learning, researchers rely more heavily on large and accurate labelled training datasets. However, obtaining large-scale labelled datasets is time-consuming and high-quality labelled datasets are expensive and scarce. To deal with these problems, online crowdsourcing systems provide us an efficient way to accelerate the process of collecting training data via distributing the enormous tasks to various annotators to help create large amounts of labelled data at an affordable cost. Nowadays, these crowdsourcing platforms are heavily needed in dealing with social media text, since the social network platforms (e.g., Twitter) generate huge amounts of data in textual form everyday. However, people from different social and knowledge backgrounds have different views on various texts, which may lead to noisy labels. The existing noisy label aggregation/refinement algorithms mostly focus on aggregating labels from noisy annotations, which would not guarantee their effectiveness on the subsequent classification/ranking tasks. In this article, we propose a noise-aware classification framework that integrates the steps of noisy label aggregation and classification. The aggregated noisy crowd labels are fed into a classifier for training, while the predicted labels are employed as feedback for adjusting the parameters at the label aggregating stage. The classification framework is suitable for directly running on crowdsourcing datasets and applies to various kinds of classification algorithms. The feedback strategy makes it possible for us to find optimal parameters instead of using known data for parameter selection. Simulation experiments demonstrate that our method provide significant label aggregation performance for both binary and multiple classification tasks under various noisy environments. Experimenting on real-world data validates the feasibility of our framework in real noise data and helps us verify the reasonableness of the simulated experiment settings.

Funder

GRF grant from the Research Grants Council of the Hong Kong Special Administrative Region

ITF grant from the Innovation and Technology Commission

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MinJoT: Multimodal infusion Joint Training for noise learning in text and multimodal classification problems;Information Fusion;2024-02

2. Emotion Detection in Online Social Network- A Multilabel Learning Process;2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN);2023-05-05

3. Towards Robustness to Label Noise in Text Classification via Noise Modeling;Proceedings of the 30th ACM International Conference on Information & Knowledge Management;2021-10-26

4. CrowdGP: a Gaussian Process Model for Inferring Relevance from Crowd Annotations;Proceedings of the Web Conference 2021;2021-04-19

5. Emotion Detection in Online Social Networks: A Multilabel Learning Approach;IEEE Internet of Things Journal;2020-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3