Evaluating the Potential Applications of Quaternary Logic for Approximate Computing

Author:

Sakalis Christos1ORCID,Jimborean Alexandra1,Kaxiras Stefanos1,Själander Magnus2

Affiliation:

1. Uppsala University, Uppsala, Sweden

2. Uppsala University, Norwegian University of Science and Technology, Trondheim, Norway

Abstract

There exist extensive ongoing research efforts on emerging atomic-scale technologies that have the potential to become an alternative to today’s complementary metal--oxide--semiconductor technologies. A common feature among the investigated technologies is that of multi-level devices, particularly the possibility of implementing quaternary logic gates and memory cells. However, for such multi-level devices to be used reliably, an increase in energy dissipation and operation time is required. Building on the principle of approximate computing, we present a set of combinational logic circuits and memory based on multi-level logic gates in which we can trade reliability against energy efficiency. Keeping the energy and timing constraints constant, important data are encoded in a more robust binary format while error-tolerant data are encoded in a quaternary format. We analyze the behavior of the logic circuits when exposed to transient errors caused as a side effect of this encoding. We also evaluate the potential benefit of the logic circuits and memory by embedding them in a conventional computer system on which we execute jpeg, sobel, and blackscholes approximately. We demonstrate that blackscholes is not suitable for such a system and explain why. However, we also achieve dynamic energy reductions of 10% and 13% for jpeg and sobel, respectively, and improve execution time by 38% for sobel, while maintaining adequate output quality.

Funder

SNIC though UPPMAX and by UNINETT Sigma2

Vetenskapsrådet project

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Reference53 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3