An asymmetric dual-processor architecture for low-power information appliances

Author:

Guimbretiére François1,Liu Shenwei1,Wang Han1,Manohar Rajit1

Affiliation:

1. Cornell University, Ithaca, NY

Abstract

As users become increasingly conscious of their energy footprint—either to improve battery life or to respect the environment—improved energy efficiency of systems has gained in importance. This is especially important in the context of information appliances such as e-book readers that are meant to replace books, since their energy efficiency impacts how long the appliance can be used on a single charge of the battery. In this article, we present a new software and hardware architecture for information appliances that provides significant advantages in terms of device lifetime. The architecture combines a low-power microcontroller with a high-performance application processor, where the low-power microcontroller is used to handle simple user interactions (e.g., turning pages, inking, entering text) without waking up the main application processor. We demonstrate how this architecture is easily adapted to the traditional way of building user interfaces using a user interface markup language. We report on our initial measurements using an E Ink-based prototype. When comparing our hybrid architecture to a simpler solution we found that we can increase the battery life by a factor of 1.72 for a reading task and by a factor of 3.23 for a writing task. We conclude by presenting design guidelines aimed at optimizing the overall energy signature of information appliances.

Funder

FXPAL

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference34 articles.

1. Amazon. 2007. Amazon Kindle. http://www.amazon.com/kindle/. Amazon. 2007. Amazon Kindle. http://www.amazon.com/kindle/.

2. A dynamic voltage scaled microprocessor system

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SOD;ACM Transactions on Autonomous and Adaptive Systems;2018-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3