Shortest paths in the plane with polygonal obstacles

Author:

Storer James A.1,Reif John H.2

Affiliation:

1. Brandeis Univ., Waltham, MA

2. Duke Univ., Durham, NC

Abstract

We present a practical algorithm for finding minimum-length paths between points in the Euclidean plane with (not necessarily convex) polygonal obstacles. Prior to this work, the best known algorithm for finding the shortest path between two points in the plane required Ω(n 2 log n) time and O (n 2 ) space, where n denotes the number of obstacle edges. Assuming that a triangulation or a Voronoi diagram for the obstacle space is provided with the input (if is not, either one can be precomputed in O ( n log n) time), we present an O(kn) time algorithm, where k denotes the number of “islands” (connected components) in the obstacle space. The algorithm uses only O(n) space and, given a source point s , produces an O(n) size data structure such that the distance between s and any other point x in the plane ( x ) is not necessarily an obstacle vertex or a point on an obstacle edge) can be computed in O (1) time. The algorithm can also be used to compute shortest paths for the movement of a disk (so that optimal movement for arbitrary objects can be computed to the accuracy of enclosing them with the smallest possible disk).

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference37 articles.

1. ~AHO A. V. HOPCROFT J. E. AND Ut LMAN J. D. 1983. Data Stntctures and Algorithms. ~Addison-Wesley Reading Mass. ~AHO A. V. HOPCROFT J. E. AND Ut LMAN J. D. 1983. Data Stntctures and Algorithms. ~Addison-Wesley Reading Mass.

2. ~ASANO T. GUIBAS L. HERSHBERGER J. AND IMAI H. 1986. Vis~Nhty of disjoint polygons. ~Algorittmuca 1 49 63. 10.1007/BF01840436 ~ASANO T. GUIBAS L. HERSHBERGER J. AND IMAI H. 1986. Vis~Nhty of disjoint polygons. ~Algorittmuca 1 49 63. 10.1007/BF01840436

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ISOMETRIC IMMERSIONS WITH RECTIFIABLE GEODESICS;Rocky Mountain Journal of Mathematics;2024-08-01

2. Finding the Straight Skeleton for 3D Orthogonal Polyhedrons: A Combinatorial Approach;Lecture Notes in Computer Science;2024

3. Computing and analyzing decision boundaries from shortest path maps;Computers & Graphics;2023-12

4. Routing Among Convex Polygonal Obstacles in the Plane;International Journal of Foundations of Computer Science;2023-04-21

5. A New Algorithm for Euclidean Shortest Paths in the Plane;Journal of the ACM;2023-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3