A Robust and Energy Efficient Hyperdimensional Computing System for Voltage-scaled Circuits

Author:

Liang Dehua1,Awano Hiromitsu2,Miura Noriyuki1,Shiomi Jun1

Affiliation:

1. Osaka University, Japan

2. Kyoto University, Japan

Abstract

Voltage scaling is one of the most promising approaches for energy efficiency improvement but also brings challenges to fully guaranteeing stable operation in modern VLSI. To tackle such issues, we further extend the DependableHD to the second version DependableHDv2 , a HyperDimensional Computing (HDC) system that can tolerate bit-level memory failure in the low voltage region with high robustness. DependableHDv2 introduces the concept of margin enhancement for model retraining and utilizes noise injection to improve the robustness, which is capable of application in most state-of-the-art HDC algorithms. We additionally propose the dimension-swapping technique, which aims at handling the stuck-at errors induced by aggressive voltage scaling in the memory cells. Our experiment shows that under 8% memory stuck-at error, DependableHDv2 exhibits a 2.42% accuracy loss on average, which achieves a 14.1 × robustness improvement compared to the baseline HDC solution. The hardware evaluation shows that DependableHDv2 supports the systems to reduce the supply voltage from 430mV to 340mV for both item Memory and Associative Memory, which provides a 41.8% energy consumption reduction while maintaining competitive accuracy performance.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference34 articles.

1. Davide Anguita , Alessandro Ghio , Luca Oneto , Xavier Parra , and Jorge  L. Reyes-Ortiz . 2012. Human Activity Recognition on Smartphones Using a Multiclass Hardware-Friendly Support Vector Machine . In AAL, José Bravo, Ramón Hervás, and Marcela Rodríguez (Eds.). Springer , 216–223. Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge L. Reyes-Ortiz. 2012. Human Activity Recognition on Smartphones Using a Multiclass Hardware-Friendly Support Vector Machine. In AAL, José Bravo, Ramón Hervás, and Marcela Rodríguez (Eds.). Springer, 216–223.

2. Fog computing and its role in the internet of things

3. B.H. Calhoun and A. Chandrakasan . 2004 . Characterizing and Modeling Minimum Energy Operation for Subthreshold Circuits. In International Symposium on Low Power Electronics and Design. 90–95 . B.H. Calhoun and A. Chandrakasan. 2004. Characterizing and Modeling Minimum Energy Operation for Subthreshold Circuits. In International Symposium on Low Power Electronics and Design. 90–95.

4. Ik Joon Chang , Kunhyuk Kang , S. Mukhopadhyay , C.H. Kim , and K. Roy . 2005. Fast and accurate estimation of nano-scaled SRAM read failure probability using critical point sampling . In Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005 .439–442. https://doi.org/10.1109/CICC. 2005 .1568700 10.1109/CICC.2005.1568700 Ik Joon Chang, Kunhyuk Kang, S. Mukhopadhyay, C.H. Kim, and K. Roy. 2005. Fast and accurate estimation of nano-scaled SRAM read failure probability using critical point sampling. In Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005.439–442. https://doi.org/10.1109/CICC.2005.1568700

5. A Priority-Based 6T/8T Hybrid SRAM Architecture for Aggressive Voltage Scaling in Video Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3