Mastering Variation in Human Studies

Author:

Siegmund Janet1,Peitek Norman2,Apel Sven3ORCID,Siegmund Norbert4

Affiliation:

1. Chemnitz University of Technology

2. Leibniz Institute for Neurobiology

3. Saarland University, Saarland Informatics Campus

4. Leipzig University

Abstract

The human factor is prevalent in empirical software engineering research. However, human studies often do not use the full potential of analysis methods by combining analysis of individual tasks and participants with an analysis that aggregates results over tasks and/or participants. This may hide interesting insights of tasks and participants and may lead to false conclusions by overrating or underrating single-task or participant performance. We show that studying multiple levels of aggregation of individual tasks and participants allows researchers to have both insights from individual variations as well as generalized, reliable conclusions based on aggregated data. Our literature survey revealed that most human studies perform either a fully aggregated analysis or an analysis of individual tasks. To show that there is important, non-trivial variation when including human participants, we reanalyze 12 published empirical studies, thereby changing the conclusions or making them more nuanced. Moreover, we demonstrate the effects of different aggregation levels by answering a novel research question on published sets of fMRI data. We show that when more data are aggregated, the results become more accurate. This proposed technique can help researchers to find a sweet spot in the tradeoff between cost of a study and reliability of conclusions.

Funder

Bundesministerium für Bildung und Forschung

DFG

Centre Digitisation.Bavaria

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Are Neural Bug Detectors Comparable to Software Developers on Variable Misuse Bugs?;Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering;2022-10-10

2. Considerations and Pitfalls for Reducing Threats to the Validity of Controlled Experiments on Code Comprehension;Empirical Software Engineering;2022-06-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3