Information extraction as a basis for high-precision text classification

Author:

Riloff Ellen1,Lehnert Wendy1

Affiliation:

1. Univ. of Massachusetts, Amherst

Abstract

We describe an approach to text classification that represents a compromise between traditional word-based techniques and in-depth natural language processing. Our approach uses a natural language processing task called “information extraction” as a basis for high-precision text classification. We present three algorithms that use varying amounts of extracted information to classify texts. The relevancy signatures algorithm uses linguistic phrases; the augmented relevancy signatures algorithm uses phrases and local context; and the case-based text classification algorithm uses larger pieces of context. Relevant phrases and contexts are acquired automatically using a training corpus. We evaluate the algorithms on the basis of two test sets from the MUC-4 corpus. All three algorithms achieved high precision on both test sets, with the augmented relevancy signatures algorithm and the case-based algorithm reaching 100% precision with over 60% recall on one set. Additionally, we compare the algorithms on a larger collection of 1700 texts and describe an automated method for empirically deriving appropriate threshold values. The results suggest that information extraction techniques can support high-precision text classification and, in general, that using more extracted information improves performance. As a practical matter, we also explain how the text classification system can be easily ported across domains.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hidden Variable Models in Text Classification and Sentiment Analysis;Electronics;2024-05-10

2. Maximizing total yield in safety hazard monitoring of online reviews;Expert Systems with Applications;2023-11

3. Simulation of Big Data Order-Preserving Matching and Retrieval Model Based on Deep Learning;2023 International Conference on Power, Electrical Engineering, Electronics and Control (PEEEC);2023-09-25

4. Learning Relation Ties with a Force-Directed Graph in Distant Supervised Relation Extraction;ACM Transactions on Information Systems;2023-01-09

5. Classification of Traffic Event Tweets in Portuguese Language Using Deep Learning;2022 International Wireless Communications and Mobile Computing (IWCMC);2022-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3