Efficient Decentralized LTL Monitoring Framework Using Tableau Technique

Author:

Bataineh Omar1,Rosenblum David S.1,Reynolds Mark2

Affiliation:

1. National University of Singapore, Singapore

2. University of Western Australia, Crawley WA, Australia

Abstract

This paper presents a novel framework for decentralized monitoring of Linear Temporal Logic (LTL) formulas, under the situation where processes are synchronous and the formula is represented as a tableau. The tableau technique allows one to construct a semantic tree for the input LTL formula, which can be used to optimize the decentralized monitoring of LTL in various ways. Given a system P and an LTL formula φ, we construct a tableau T φ . The tableau T φ is used for two purposes: (a) to synthesize an efficient round-robin communication policy for processes, and (b) to find the minimal ways to decompose the formula and communicate observations of processes in an efficient way. In our framework, processes can propagate truth values of both atomic and compound formulas (non-atomic formulas) depending on the syntactic structure of the input LTL formula and the observation power of processes. We demonstrate that this approach of decentralized monitoring based on tableau construction is more straightforward, more flexible, and more likely to yield efficient solutions than alternative approaches.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference23 articles.

1. Hamid Alavi George Avrunin James Corbett Laura Dillon Matt Dwyer and Corina Pasareanu. 2011. Specification patterns website. http://patterns.projects.cis.ksu.edu/. Hamid Alavi George Avrunin James Corbett Laura Dillon Matt Dwyer and Corina Pasareanu. 2011. Specification patterns website. http://patterns.projects.cis.ksu.edu/.

2. Decentralised LTL Monitoring

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3