Deterministic Constant-Amortized-RMR Abortable Mutex for CC and DSM

Author:

Jayanti Prasad1,Jayanti Siddhartha2

Affiliation:

1. Dartmouth College, Hanover, USA

2. MIT, Cambridge, USA

Abstract

The abortable mutual exclusion problem, proposed by Scott and Scherer in response to the needs in real-time systems and databases, is a variant of mutual exclusion that allows processes to abort from their attempt to acquire the lock. Worst-case constant remote memory reference algorithms for mutual exclusion using hardware instructions such as Fetch&Add or Fetch&Store have long existed for both cache coherent (CC) and distributed shared memory multiprocessors, but no such algorithms are known for abortable mutual exclusion. Even relaxing the worst-case requirement to amortized, algorithms are only known for the CC model. In this article, we improve this state of the art by designing a deterministic algorithm that uses Fetch&Store to achieve amortized O (1) remote memory reference in both the CC and distributed shared memory models. Our algorithm supports Fast Abort (a process aborts within six steps of receiving the abort signal) and has the following additional desirable properties: it supports an arbitrary number of processes of arbitrary names, requires only O (1) space per process, and satisfies a novel fairness condition that we call Airline FCFS . Our algorithm is short with fewer than a dozen lines of code.

Funder

James Family Professorship

NDSEG Fellowship

U.S. Department of Defense

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Computer Science Applications,Hardware and Architecture,Modelling and Simulation,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constant RMR System-wide Failure Resilient Durable Locks with Dynamic Joining;Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures;2023-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3