Affiliation:
1. Universidade Tecnológica Federal do Paraná - UTFPR, Curitiba, Brazil
2. University of Toronto, Toronto, Canada
Abstract
Opinion mining in outdoor images posted by users during different activities can provide valuable information to better understand urban areas. In this regard, we propose a framework to classify the sentiment of outdoor images shared by users on social networks. We compare the performance of state-of-the-art ConvNet architectures and one specifically designed for sentiment analysis. We also evaluate how the merging of deep features and semantic information derived from the scene attributes can improve classification and cross-dataset generalization performance. The evaluation explores a novel dataset—namely, OutdoorSent—and other publicly available datasets. We observe that the incorporation of knowledge about semantic attributes improves the accuracy of all ConvNet architectures studied. Besides, we found that exploring only images related to the context of the study—outdoor, in our case—is recommended, i.e., indoor images were not significantly helpful. Furthermore, we demonstrated the applicability of our results in the United States city of Chicago, Illinois, showing that they can help to improve the knowledge of subjective characteristics of different areas of the city. For instance, particular areas of the city tend to concentrate more images of a specific class of sentiment, which are also correlated with median income, opening up opportunities in different fields.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Fundação de Amparo à Pesquisa do Estado de São Paulo
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Science Applications,General Business, Management and Accounting,Information Systems
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献