Not so fast: understanding and mitigating negative impacts of compiler optimizations on code reuse gadget sets

Author:

Brown Michael D.1ORCID,Pruett Matthew1,Bigelow Robert1,Mururu Girish1,Pande Santosh1

Affiliation:

1. Georgia Institute of Technology, USA

Abstract

Despite extensive testing and correctness certification of their functional semantics, a number of compiler optimizations have been shown to violate security guarantees implemented in source code. While prior work has shed light on how such optimizations may introduce semantic security weaknesses into programs, there remains a significant knowledge gap concerning the impacts of compiler optimizations on non-semantic properties with security implications. In particular, little is currently known about how code generation and optimization decisions made by the compiler affect the availability and utility of reusable code segments called gadgets required for implementing code reuse attack methods such as return-oriented programming. In this paper, we bridge this gap through a study of the impacts of compiler optimization on code reuse gadget sets. We analyze and compare 1,187 variants of 20 different benchmark programs built with two production compilers (GCC and Clang) to determine how their optimization behaviors affect the code reuse gadget sets present in program variants with respect to both quantitative and qualitative metrics. Our study exposes an important and unexpected problem; compiler optimizations introduce new gadgets at a high rate and produce code containing gadget sets that are generally more useful to an attacker than those in unoptimized code. Using differential binary analysis, we identify several undesirable behaviors at the root of this phenomenon. In turn, we propose and evaluate several strategies to mitigate these behaviors. In particular, we show that post-production binary recompilation can effectively mitigate these behaviors with negligible performance impacts, resulting in optimized code with significantly smaller and less useful gadget sets.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SoK: A Tale of Reduction, Security, and Correctness - Evaluating Program Debloating Paradigms and Their Compositions;Lecture Notes in Computer Science;2024

2. Improving Security Tasks Using Compiler Provenance Information Recovered At the Binary-Level;Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security;2023-11-15

3. Divergent Representations: When Compiler Optimizations Enable Exploitation;2023 IEEE Security and Privacy Workshops (SPW);2023-05

4. Automatically Detecting Variability Bugs Through Hybrid Control and Data Flow Analysis;2023 IEEE Security and Privacy Workshops (SPW);2023-05

5. Decker: Attack Surface Reduction via On-Demand Code Mapping;Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2;2023-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3