Generalized Task Parallelism

Author:

Streit Kevin1,Doerfert Johannes1,Hammacher Clemens1,Zeller Andreas1,Hack Sebastian1

Affiliation:

1. Saarland University, Germany

Abstract

Existing approaches to automatic parallelization produce good results in specific domains. Yet, it is unclear how to integrate their individual strengths to match the demands and opportunities of complex software. This lack of integration has both practical reasons, as integrating those largely differing approaches into one compiler would impose an engineering hell, as well as theoretical reasons, as no joint cost model exists that would drive the choice between parallelization methods. By reducing the problem of generating parallel code from a program dependence graph to integer linear programming, <i>generalized task parallelization</i> integrates central aspects of existing parallelization approaches into a single unified framework. Implemented on top of LLVM, the framework seamlessly integrates enabling technologies such as speculation, privatization, and the realization of reductions. Evaluating our implementation on various C programs from different domains, we demonstrate the effectiveness and generality of generalized task parallelization. On a quad-core machine with hyperthreading we achieve speedups of up to 4.6 ×.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sparse computation data dependence simplification for efficient compiler-generated inspectors;Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation;2019-06-08

2. Advances in Engineering Software for Multicore Systems;Dependability Engineering;2018-06-06

3. Thread-level speculation with kernel support;Proceedings of the 25th International Conference on Compiler Construction;2016-03-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3