1. Benchmark datasets for entity resolution. https://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution. Benchmark datasets for entity resolution. https://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution.
2. Duplicate detection record linkage and identity uncertainty: Datasets. http://www.cs.utexas.edu/users/ml/riddle/data.html. Duplicate detection record linkage and identity uncertainty: Datasets. http://www.cs.utexas.edu/users/ml/riddle/data.html.
3. How to understand the drawbacks of k-means? https://stats.stackexchange.com/questions/133656/how-to-understand-the-drawbacks-of-k-means Jun 2019. [Online; accessed 28 Jun 2019]. How to understand the drawbacks of k-means? https://stats.stackexchange.com/questions/133656/how-to-understand-the-drawbacks-of-k-means Jun 2019. [Online; accessed 28 Jun 2019].
4. sklearn.mixture.GaussianMixture ifmmode--else-fi scikit-learn 0.21.2 documentation May 2019. [Online; accessed 31. May 2019]. sklearn.mixture.GaussianMixture ifmmode--else-fi scikit-learn 0.21.2 documentation May 2019. [Online; accessed 31. May 2019].