MHGCN+: Multiplex Heterogeneous Graph Convolutional Network

Author:

Fu Chaofan1ORCID,Yu Pengyang1ORCID,Yu Yanwei1ORCID,Huang Chao2ORCID,Zhao Zhongying3ORCID,Dong Junyu1ORCID

Affiliation:

1. Ocean University of China, Qingdao, China

2. The University of Hong Kong, Hong Kong, China

3. Shandong University of Science and Technology, Qingdao, China

Abstract

Heterogeneous graph convolutional networks have gained great popularity in tackling various network analytical tasks on heterogeneous graph data, ranging from link prediction to node classification. However, most existing works ignore the relation heterogeneity with multiplex networks between multi-typed nodes and the different importance of relations in meta-paths for node embedding, which can hardly capture the heterogeneous structure signals across different relations. To tackle this challenge, this work proposes a M ultiplex H eterogeneous G raph C onvolutional N etwork (MHGCN+) for multiplex heterogeneous network embedding. Our MHGCN+ can automatically learn the useful heterogeneous meta-path interactions of different lengths with different importance in multiplex heterogeneous networks through multi-layer convolution aggregation. Additionally, we effectively integrate both multi-relation structural signals and attribute semantics into the learned node embeddings with both unsupervised and semi-supervised learning paradigms. Extensive experiments on seven real-world datasets with various network analytical tasks demonstrate the significant superiority of MHGCN+ against state-of-the-art embedding baselines in terms of all evaluation metrics. The source code of our method is available at: https://github.com/FuChF/MHGCN-plus .

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Association for Computing Machinery (ACM)

Reference53 articles.

1. Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the KDD. 2623–2631.

2. Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia Yang, Jingren Zhou, and Jie Tang. 2019. Representation learning for attributed multiplex heterogeneous network. In Proceedings of the KDD. 1358–1368.

3. Haochen Chen, Syed Fahad Sultan, Yingtao Tian, Muhao Chen, and Steven Skiena. 2019. Fast and accurate network embeddings via very sparse random projection. In Proceedings of the CIKM. 399–408.

4. Hongxu Chen, Hongzhi Yin, Weiqing Wang, Hao Wang, Quoc Viet Hung Nguyen, and Xue Li. 2018. PME: Projected metric embedding on heterogeneous networks for link prediction. In Proceedings of the KDD. 1177–1186.

5. Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. 2017. metapath2vec: Scalable representation learning for heterogeneous networks. In Proceedings of the KDD. 135–144.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3