Finding and Understanding Defects in Static Analyzers by Constructing Automated Oracles

Author:

He Weigang1ORCID,Di Peng2ORCID,Ming Mengli3ORCID,Zhang Chengyu4ORCID,Su Ting3ORCID,Li Shijie2ORCID,Sui Yulei5ORCID

Affiliation:

1. East China Normal University, Shanghai, China / University of Technology Sydney, Sydney, Australia

2. Ant Group, Hangzhou, China

3. East China Normal University, Shanghai, China

4. ETH Zurich, Zurich, Switzerland

5. University of New South Wales, Sydney, Australia

Abstract

Static analyzers are playing crucial roles in helping find programming mistakes and security vulnerabilities. The correctness of their analysis results is crucial for the usability in practice. Otherwise, the potential defects in these analyzers (, implementation errors, improper design choices) could affect the soundness (leading to false negatives) and precision (leading to false positives). However, finding the defects in off-the-shelf static analyzers is challenging because these analyzers usually lack clear and complete specifications, and the results of different analyzers may differ. To this end, this paper designs two novel types of automated oracles to find defects in static analyzers with randomly generated programs. The first oracle is constructed by using dynamic program executions and the second one leverages the inferred static analysis results. We applied these two oracles on three state-of-the-art static analyzers: Clang Static Analyzer (CSA), GCC Static Analyzer (GSA), and Pinpoint. We found 38 unique defects in these analyzers, 28 of which have been confirmed or fixed by the developers. We conducted a case study on these found defects followed by several insights and lessons learned for improving and better understanding static analyzers. We have made all the artifacts publicly available at https://github.com/Geoffrey1014/SA_Bugs for replication and benefit the community.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3