Input Distribution Coverage: Measuring Feature Interaction Adequacy in Neural Network Testing

Author:

Dola Swaroopa1ORCID,Dwyer Matthew B.1ORCID,Soffa Mary Lou1ORCID

Affiliation:

1. University of Virginia, Charlottesville, Virginia, USA

Abstract

Testing deep neural networks (DNNs) has garnered great interest in the recent years due to their use in many applications. Black-box test adequacy measures are useful for guiding the testing process in covering the input domain. However, the absence of input specifications makes it challenging to apply black-box test adequacy measures in DNN testing. The Input Distribution Coverage (IDC) framework addresses this challenge by using a variational autoencoder to learn a low dimensional latent representation of the input distribution, and then using that latent space as a coverage domain for testing. IDC applies combinatorial interaction testing on a partitioning of the latent space to measure test adequacy. Empirical evaluation demonstrates that IDC is cost-effective, capable of detecting feature diversity in test inputs, and more sensitive than prior work to test inputs generated using different DNN test generation methods. The findings demonstrate that IDC overcomes several limitations of white-box DNN coverage approaches by discounting coverage from unrealistic inputs and enabling the calculation of test adequacy metrics that capture the feature diversity present in the input space of DNNs.

Funder

National Science Foundation awards

The Air Force Office of Scientific Research

Lockheed Martin Advanced Technology Laboratories

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference95 articles.

1. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dandelion Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/. Software available from tensorflow.org.

2. How faithful is your synthetic data? Sample-level metrics for evaluating and auditing generative models;Alaa Ahmed M.;CoRR,2021

3. Using Mutation Analysis for Assessing and Comparing Testing Coverage Criteria

4. David Bau, Jun-Yan Zhu, Jonas Wulff, William Peebles, Hendrik Strobelt, Bolei Zhou, and Antonio Torralba. 2019. Seeing what a GAN cannot generate. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 4502–4511.

5. David Berend, Xiaofei Xie, Lei Ma, Lingjun Zhou, Yang Liu, Chi Xu, and Jianjun Zhao. 2020. Cats are not fish: Deep learning testing calls for out-of-distribution awareness. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering. 1041–1052.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Validity Matters: Uncertainty‐Guided Testing of Deep Neural Networks;Software Testing, Verification and Reliability;2024-08-21

2. Harnessing Neuron Stability to Improve DNN Verification;Proceedings of the ACM on Software Engineering;2024-07-12

3. Test Input Prioritization for 3D Point Clouds;ACM Transactions on Software Engineering and Methodology;2024-06-04

4. S3C: Spatial Semantic Scene Coverage for Autonomous Vehicles;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-04-12

5. CIT4DNN: Generating Diverse and Rare Inputs for Neural Networks Using Latent Space Combinatorial Testing;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3