B-tree indexes for high update rates

Author:

Graefe Goetz

Abstract

In some applications, data capture dominates query processing. For example, monitoring moving objects often requires more insertions and updates than queries. Data gathering using automated sensors often exhibits this imbalance. More generally, indexing streams is considered an unsolved problem.For those applications, B-tree indexes are good choices if some trade-off decisions are tilted towards optimization of updates rather than towards optimization of queries. This paper surveys some techniques that let B-trees sustain very high update rates, up to multiple orders of magnitude higher than traditional B-trees, at the expense of query processing performance. Not surprisingly, some of these techniques are reminiscent of those employed during index creation, index rebuild, etc., while other techniques are derived from well known technologies such as differential files and log-structured file systems.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Reference18 articles.

1. Efficient Bulk Operations on Dynamic R-Trees

2. {G 03b} Goetz Graefe: Partitioned B-trees - a user's guide. Datenbanksysteme für Business Technologie und Web (BTW) 2003:668--671. {G 03b} Goetz Graefe: Partitioned B-trees - a user's guide. Datenbanksysteme für Business Technologie und Web (BTW) 2003:668--671.

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Empirical Evaluation of Variable-length Record B+Trees on a Modern Graph Database System;2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW);2024-05-13

2. RBOIRA: Integrating Rules and Reinforcement Learning to Improve Index Recommendation;ICST Transactions on Scalable Information Systems;2023-09-18

3. Tree Data Structures and Efficient Indexing Techniques for Big Data Management: A Comprehensive Study;Proceedings of the 26th Pan-Hellenic Conference on Informatics;2022-11-25

4. Automatic index selection with learned cost estimator;Information Sciences;2022-10

5. Provenance-based data skipping;Proceedings of the VLDB Endowment;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3