Dynamic count filters

Author:

Aguilar-Saborit J.1,Trancoso P.2,Muntes-Mulero V.1,Larriba-Pey J. L.1

Affiliation:

1. Universitat Politecnica de Catalunya

2. University of Cyprus

Abstract

Bloom filters are not able to handle deletes and inserts on multisets over time. This is important in many situations when streamed data evolve rapidly and change patterns frequently. Counting Bloom Filters (CBF) have been proposed to overcome this limitation and allow for the dynamic evolution of Bloom filters. The only dynamic approach to a compact and efficient representation of CBF are the Spectral Bloom Filters (SBF).In this paper we propose the Dynamic Count Filters (DCF) as a new dynamic and space-time efficient representation of CBF. Although DCF does not make a compact use of memory, it shows to be faster and more space efficient than any previous proposal. Results show that the proposed data structure is more efficient independently of the incoming data characteristics.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ring Sketch:A Generic, Low-Complexity, and Hardware-Friendly Traffic Measurement Framework over Sliding Windows;ICC 2024 - IEEE International Conference on Communications;2024-06-09

2. Trapezoidal Sketch: A Sketch Structure for Frequency Estimation of Data Streams;The Computer Journal;2022-08-09

3. A Sketch Framework for Approximate Data Stream Processing in Sliding Windows;IEEE Transactions on Knowledge and Data Engineering;2022

4. HSS: Faster and More Accurate Sliding Sketch by Using Half Fields;2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys);2021-12

5. Pyramid Family: Generic Frameworks for Accurate and Fast Flow Size Measurement;IEEE/ACM Transactions on Networking;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3