Research issues in data stream association rule mining

Author:

Jiang Nan1,Gruenwald Le1

Affiliation:

1. The University of Oklahoma, Norman

Abstract

There exist emerging applications of data streams that require association rule mining, such as network traffic monitoring and web click streams analysis. Different from data in traditional static databases, data streams typically arrive continuously in high speed with huge amount and changing data distribution. This raises new issues that need to be considered when developing association rule mining techniques for stream data. This paper discusses those issues and how they are addressed in the existing literature.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Reference46 articles.

1. {Agrawal 1993} Rakesh Agrawal Tomasz Imielinski Arun Swami; Mining Association Rules between Sets of Items in Massive Databases; Int'l Conf. on Management of Data; May 1993. 10.1145/170035.170072 {Agrawal 1993} Rakesh Agrawal Tomasz Imielinski Arun Swami; Mining Association Rules between Sets of Items in Massive Databases; Int'l Conf. on Management of Data; May 1993. 10.1145/170035.170072

2. {Agrawal 1994} Rakesh Agrawal Ramakrishnan Srikant; Fast Algorithms for Mining Association Rules; Int'l Conf. on Very Large Databases; September 1994. {Agrawal 1994} Rakesh Agrawal Ramakrishnan Srikant; Fast Algorithms for Mining Association Rules; Int'l Conf. on Very Large Databases; September 1994.

3. {Bruzzese 2004} Dario Bruzzese Paolo Buono; Combining Visual Techniques for Association Rules Exploration; The Working Conf. on Advanced Visual Interfaces; May 2004. 10.1145/989863.989930 {Bruzzese 2004} Dario Bruzzese Paolo Buono; Combining Visual Techniques for Association Rules Exploration; The Working Conf. on Advanced Visual Interfaces; May 2004. 10.1145/989863.989930

4. {Cai 2004} Y. Dora Cai Greg Pape Jiawei Han Michael Welge Loretta Auvil; MAIDS: Mining Alarming Incidents from Data Streams; Int'l Conf. on Management of Data; June 2004. 10.1145/1007568.1007695 {Cai 2004} Y. Dora Cai Greg Pape Jiawei Han Michael Welge Loretta Auvil; MAIDS: Mining Alarming Incidents from Data Streams; Int'l Conf. on Management of Data; June 2004. 10.1145/1007568.1007695

5. {Chang 2003} Joong Hyuk Chang Won Suk Lee Aoying Zhou; Finding Recent Frequent Itemsets Adaptively over Online Data Streams; ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining; August 2003. 10.1145/956750.956807 {Chang 2003} Joong Hyuk Chang Won Suk Lee Aoying Zhou; Finding Recent Frequent Itemsets Adaptively over Online Data Streams; ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining; August 2003. 10.1145/956750.956807

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3