Online Algorithm for Differentially Private Genome-wide Association Studies

Author:

Aziz Md Momin Al1ORCID,Kamali Shahin1,Mohammed Noman1,Jiang Xiaoqian2

Affiliation:

1. Computer Science, University of Manitoba, Winnipeg, Canada Canada

2. School of Biomedical Informatics, University of Texas Health Science Center at Houston, USA

Abstract

Digitization of healthcare records contributed to a large volume of functional scientific data that can help researchers to understand the behaviour of many diseases. However, the privacy implications of this data, particularly genomics data, have surfaced recently as the collection, dissemination, and analysis of human genomics data is highly sensitive. There have been multiple privacy attacks relying on the uniqueness of the human genome that reveals a participant or a certain group’s presence in a dataset. Therefore, the current data sharing policies have ruled out any public dissemination and adopted precautionary measures prior to genomics data release, which hinders timely scientific innovation. In this article, we investigate an approach that only releases the statistics from genomic data rather than the whole dataset and propose a generalized Differentially Private mechanism for Genome-wide Association Studies (GWAS). Our method provides a quantifiable privacy guarantee that adds noise to the intermediate outputs but ensures satisfactory accuracy of the private results. Furthermore, the proposed method offers multiple adjustable parameters that the data owners can set based on the optimal privacy requirements. These variables are presented as equalizers that balance between the privacy and utility of the GWAS. The method also incorporates Online Bin Packing technique [1], which further bounds the privacy loss linearly, growing according to the number of open bins and scales with the incoming queries. Finally, we implemented and benchmarked our approach using seven different GWAS studies to test the performance of the proposed methods. The experimental results demonstrate that for 1,000 arbitrary online queries, our algorithms are more than 80% accurate with reasonable privacy loss and exceed the state-of-the-art approaches on multiple studies (i.e., EigenStrat, LMM, TDT).

Funder

CPRIT Scholar in Cancer Research

NSERC Discovery Grants

National Institute of Health

Publisher

Association for Computing Machinery (ACM)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3