Affiliation:
1. Computer Science, University of Manitoba, Winnipeg, Canada Canada
2. School of Biomedical Informatics, University of Texas Health Science Center at Houston, USA
Abstract
Digitization of healthcare records contributed to a large volume of functional scientific data that can help researchers to understand the behaviour of many diseases. However, the privacy implications of this data, particularly genomics data, have surfaced recently as the collection, dissemination, and analysis of human genomics data is highly sensitive. There have been multiple privacy attacks relying on the uniqueness of the human genome that reveals a participant or a certain group’s presence in a dataset. Therefore, the current data sharing policies have ruled out any public dissemination and adopted precautionary measures prior to genomics data release, which hinders timely scientific innovation. In this article, we investigate an approach that only releases the statistics from genomic data rather than the whole dataset and propose a generalized Differentially Private mechanism for Genome-wide Association Studies (GWAS). Our method provides a quantifiable privacy guarantee that adds noise to the intermediate outputs but ensures satisfactory accuracy of the private results. Furthermore, the proposed method offers multiple adjustable parameters that the data owners can set based on the optimal privacy requirements. These variables are presented as equalizers that balance between the privacy and utility of the GWAS. The method also incorporates
Online Bin Packing
technique [1], which further bounds the privacy loss linearly, growing according to the number of open bins and scales with the incoming queries. Finally, we implemented and benchmarked our approach using
seven
different GWAS studies to test the performance of the proposed methods. The experimental results demonstrate that for 1,000 arbitrary online queries, our algorithms are more than 80% accurate with reasonable privacy loss and exceed the state-of-the-art approaches on multiple studies (i.e., EigenStrat, LMM, TDT).
Funder
CPRIT Scholar in Cancer Research
NSERC Discovery Grants
National Institute of Health
Publisher
Association for Computing Machinery (ACM)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献