A Survey of Cloudlet-Based Mobile Augmentation Approaches for Resource Optimization

Author:

Nayyer M. Ziad1,Raza Imran2,Hussain Syed Asad2

Affiliation:

1. GIFT University, Gujranwala, Pakistan and COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan

2. COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan

Abstract

Mobile devices (MDs) face resource scarcity challenges owing to limited energy and computational resources. Mobile cloud computing (MCC) offers a resource-rich environment to MDs for offloading compute-intensive tasks encountering resource scarcity challenges. However, users are unable to exploit its full potential owing to challenges of distance, limited bandwidth, and seamless connectivity between the remote cloud (RC) and MDs in the conventional MCC model. The cloudlet-based solution is widely used to address these challenges. The response of the cloudlet-based solution is faster than the conventional mobile cloud-computing model, rendering it suitable for the Internet of Things (IoT) and Smart Cities (SC). However, with the increase in devices and workloads, the cloudlet-based solution has to deal with resource-scarcity challenges, thus, forwarding the requests to remote clouds. This study has been carried out to provide an insight into existing cloudlet-based mobile augmentation (CtMA) approaches and highlights the underlying limitations for resource optimization. Furthermore, numerous performance parameters have been identified and their detailed comparative analysis has been used to quantify the efficiency of CtMA approaches.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Cloudlet Selection in Edge Computing for Resource Allocation;SN Computer Science;2023-09-27

2. Mobile crowd computing: potential, architecture, requirements, challenges, and applications;The Journal of Supercomputing;2023-07-29

3. Trust-aware Cloudlet Federation Model for Secure Service Selection;2023 International Conference on Energy, Power, Environment, Control, and Computing (ICEPECC);2023-03-08

4. Task Scheduling on Cloudlet in Mobile Cloud Computing with Load Balancing;International Journal of Electrical and Electronics Research;2022-12-30

5. Evaluation methodology for deep learning imputation models;Experimental Biology and Medicine;2022-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3