Efficiency matters!

Author:

Anderson Eric1,Tucek Joseph1

Affiliation:

1. Hewlett-Packard Laboratories, Palo Alto, CA

Abstract

Current data intensive scalable computing (DISC) systems, although scalable, achieve embarrassingly low rates of processing per node. We feel that current DISC systems have repeated a mistake of old high-performance systems: focusing on scalability without considering efficiency. This poor efficiency comes with issues in reliability, energy, and cost. As the gap between theoretical performance and what is actually achieved has become glaringly large, we feel there is a pressing need to rethink the design of future data intensive computing and carefully consider the direction of future research.

Publisher

Association for Computing Machinery (ACM)

Reference20 articles.

1. DataSeries

2. Highly parallel perspective: Twelve ways to fool the masses when giving performance results on parallel computers;Bailey David H.;Supercomputing Review,1991

3. Luiz André Barroso. Saving the planet with systems research. Keynote abstract at http://www.cs.virginia.edu/asplos09/keynote.htm Accessed June 2009. Luiz André Barroso. Saving the planet with systems research. Keynote abstract at http://www.cs.virginia.edu/asplos09/keynote.htm Accessed June 2009.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Map-Reduce based Distance Weighted k-Nearest Neighbor Machine Learning Algorithm for Big Data Applications;Scalable Computing: Practice and Experience;2022-12-22

2. DupM: a Data Replica Allocation Strategy for Distributed Mining;Procedia Computer Science;2021

3. Big Data analytics in medical imaging;Applications of Big Data in Healthcare;2021

4. A Profound Analysis of Parallel Processing Algorithms for Big Image Applications;Algorithms for Intelligent Systems;2020-09-17

5. Efficient Graph Search;Queue;2020-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3