On Provenance Minimization

Author:

Amsterdamer Yael1,Deutch Daniel2,Milo Tova3,Tannen Val4

Affiliation:

1. Tel Aviv University and University of Pennsylvania

2. Ben Gurion University and University of Pennsylvania

3. Tel Aviv University

4. University of Pennsylvania

Abstract

Provenance information has been proved to be very effective in capturing the computational process performed by queries, and has been used extensively as the input to many advanced data management tools (e.g., view maintenance, trust assessment, or query answering in probabilistic databases). We observe here that while different (set-)equivalent queries may admit different provenance expressions when evaluated on the same database, there is always some part of these expressions that is common to all. We refer to this part as the core provenance. In addition to being informative, the core provenance is also useful as a compact input to the aforementioned data management tools. We formally define the notion of core provenance. We study algorithms that, given a query, compute an equivalent (called p-minimal) query that for every input database, the provenance of every result tuple is the core provenance. We study such algorithms for queries of varying expressive power (namely conjunctive queries with disequalities and unions thereof). Finally, we observe that, in general, one would not want to require database systems to execute a specific p-minimal query, but instead to be able to find, possibly off-line, the core provenance of a given tuple in the output (computed by an arbitrary equivalent query), without reevaluating the query. We provide algorithms for such direct computation of the core provenance.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Minimally Factorizing the Provenance of Self-join Free Conjunctive Queries;Proceedings of the ACM on Management of Data;2024-05-10

2. Heuristic and Cost-Based Optimization for Diverse Provenance Tasks;IEEE Transactions on Knowledge and Data Engineering;2019-07-01

3. ProvCite;Proceedings of the VLDB Endowment;2019-03

4. Context-aware result inference in crowdsourcing;Information Sciences;2018-09

5. Fides;Proceedings of the 29th International Conference on Scientific and Statistical Database Management;2017-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3